One‐Dimensional Ferroelectric Nanostructures: Synthesis, Properties, and Applications

نویسندگان

  • Longyue Liang
  • Xueliang Kang
  • Yuanhua Sang
  • Hong Liu
چکیده

One-dimensional (1D) ferroelectric nanostructures, such as nanowires, nanorods, nanotubes, nanobelts, and nanofibers, have been studied with increasing intensity in recent years. Because of their excellent ferroelectric, ferroelastic, pyroelectric, piezoelectric, inverse piezoelectric, ferroelectric-photovoltaic (FE-PV), and other unique physical properties, 1D ferroelectric nanostructures have been widely used in energy-harvesting devices, nonvolatile random access memory applications, nanoelectromechanical systems, advanced sensors, FE-PV devices, and photocatalysis mechanisms. This review summarizes the current state of 1D ferroelectric nanostructures and provides an overview of the synthesis methods, properties, and practical applications of 1D nanostructures. Finally, the prospects for future investigations are outlined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One-Dimensional Perovskite Manganite Oxide Nanostructures: Recent Developments in Synthesis, Characterization, Transport Properties, and Applications.

One-dimensional nanostructures, including nanowires, nanorods, nanotubes, nanofibers, and nanobelts, have promising applications in mesoscopic physics and nanoscale devices. In contrast to other nanostructures, one-dimensional nanostructures can provide unique advantages in investigating the size and dimensionality dependence of the materials' physical properties, such as electrical, thermal, a...

متن کامل

ZnO Quasi-1D Nanostructures: Synthesis, Modeling, and Properties for Applications in Conductometric Chemical Sensors

One-dimensional metal oxide nanostructures such as nanowires, nanorods, nanotubes, and nanobelts gained great attention for applications in sensing devices. ZnO is one of the most studied oxides for sensing applications due to its unique physical and chemical properties. In this paper, we provide a review of the recent research activities focused on the synthesis and sensing properties of pure,...

متن کامل

CuO nano structures as an ecofriendly nano photo catalyst and antimicrobial agent for environmental remediation

Present work focuses on the synthesis strategies for different CuO nanostructures along with associated formation mechanisms and their interesting fundamental properties, and promising applications in biological and environmental remediation. We present a variety of synthesis techniques for producing diverse types of CuO nanostructures with various morphologies such as nanoparticles, nanoleaves...

متن کامل

CuO nano structures as an ecofriendly nano photo catalyst and antimicrobial agent for environmental remediation

Present work focuses on the synthesis strategies for different CuO nanostructures along with associated formation mechanisms and their interesting fundamental properties, and promising applications in biological and environmental remediation. We present a variety of synthesis techniques for producing diverse types of CuO nanostructures with various morphologies such as nanoparticles, nanoleaves...

متن کامل

One-dimensional boron nanostructures: Prediction, synthesis, characterizations, and applications.

One-dimensional (1D) boron nanostructures are very potential for nanoscale electronic devices since their physical properties including electric transport and field emission have been found very promising as compared to other well-developed 1D nanomaterials. In this article, we review the current progress that has been made on 1D boron nanostructures in terms of theoretical prediction, syntheti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2016